Tuesday, March 19, 2013

chapter 9


We obtain the following integral formulas by reversing the formulas for differentiation of trigonometric functionsthat we met earlier:
sin u du=cos u+K
cos u du=sin u+K
sec2u du=tan u+K
csc2u du=cot u+K

Integral of sec x, csc x

These are obtained by simply reversing the differentiation process.
sec u tan u du=sec u+Kcsc u cot u du=csc u+K
Example 3: Integrate: csc 2x cot 2x dx

Integral of tan x, cot x

Now, if we want to find tanx dx, we note that
tanx dx=sinxcosxdx
Let u=cosx, then du=sinx dx.                 done by:aishu
tanx dx=sinxcosxdx=duu=ln|u|+K=ln|cosx|+

No comments:

Post a Comment

Music Music Music