We obtain the following integral formulas by reversing the formulas for differentiation of trigonometric functionsthat we met earlier:
∫sin u du=−cos u+K
∫cos u du=sin u+K
∫sec2u du=tan u+K
∫csc2u du=−cot u+K
Integral of sec x, csc x
These are obtained by simply reversing the differentiation process.
Example 3: Integrate:∫sec u tan u du=sec u+K∫csc u cot u du=−csc u+K ∫csc 2x cot 2x dx
Integral of tan x, cot x
Now, if we want to find∫tanx dx , we note that
∫tanx dx=∫sinxcosxdx
Letu=cosx , thendu=−sinx dx . done by:aishu
∫tanx dx=∫sinxcosxdx=−∫duu=−ln|u|+K=−ln|cosx|+
No comments:
Post a Comment